Handwritten Digit Classification **MNIST and USPS**

Anunay Rao anunayra@buffalo.edu 1 Introduction The project is to apply the different machine learning methods for the task of classification namely, Logistic Regression, Neural Network, Support Vector Machine and Random Forest. Further. We have to create an ensemble of these four classifiers i.e combine all the models and then by majority voting we have to make the final decision. Here, we will train our model on MNIST dataset and then test it on MNIST test set and as well as on USPS test set.

13 2 **Pre-processing of the Dataset**

14 Initially we have been provided with two datasets namely, MNIST Dataset 15 and USPS Dataset. As these datasets are composed of images we have to 16 process them to get the features.

17

1 2

3

4 5

6

7

8 9

10

11

12

18 2.1 **MNIST Dataset**

19 This dataset consists of grayscale images of digits from 0-9 of size 28x28. 20 The grayscale image has the pixel value from 0 to 255 where 0 corresponds to 21 the darkest and 255 corresponds to the brightest. Thus, taking the pixel value as features we will have 28x28 = 784 features. 22

23

2.1 24 **USPS** Dataset

25 This dataset also contains images of digits 0-9 of different sizes which will give 26 different number of features if we consider the pixel values. Therefore, we have to 27 first resize the image to 28x28 and then take pixel value. We have to normalize 28 29 the pixel value so that all the values are between 0 and 255.

30 3 **Performance Metric**

31 We will evaluate the performance of these two models by accuracy which is 32 defined as:

33
$$Accuracy = \frac{right}{right + wrong} \times 100$$

- 34
- 35
- 36

37 4 Hyper-parameters values and Results:

39 4.1 Logistic Regression

40 For Logistic Regression since it is a 10-class problem we need to have one-hot

41 encoding to represent the target class. Therefore we will convert the set of target

42 values to the set of one-hot vectors.

43

38

44 Training Samples = 50000

45 Validation Samples = 10000

- 46 Testing Samples MNIST = 10000
- 47 Testing Samples USPS = 20000
- 48 learning rate: 0.003
- 49

50 4.1.1 Results and Confusion Matrix on MNIST Dataset

- 51 Training Accuracy = 92.28
- 52 Validation Accuracy = 92.56
- 53 Testing Accuracy = 92.01
- 54 **Confusion Matrix:**

[954	0	1	3	0	5	10	3	4	0]
[0	1111	2	2	0	2	4	2	12	0]
[5	10	909	24	7	5	13	11	40	8]
[2	0	15	933	0	25	2	11	16	6]
[0	3	6	2	899	1	12	5	9	45]
[8	2	2	40	6	778	14	8	27	7]
[8	3	3	2	7	20	910	2	3	0]
[1	6	21	9	5	1	0	951	4	30]
[4	8	4	39	8	42	9	12	841	7]
[7	7	2	12	23	13	0	26	4	915]

55

56 where C[i,j] is equal to the number of observations known to be in class i but 57 predicted to be in class j.

58

59 4.1.2 Results and Confusion Matrix on USPS Dataset

60 Testing Accuracy = 33.44

61 Confusion Matrix:

[469	1	183	129	91	360	68	209	147	343]
[87	288	276	204	177	172	18	554	201	23]
[102	16	1237	163	24	245	65	46	69	32]
[36	3	202	1085	5	537	5	59	50	18]
[44	31	55	55	770	175	39	381	283	167]
[78	9	233	216	19	1254	60	62	51	18]
[131	3	588	85	46	437	634	17	14	45]
[127	102	99	667	44	133	10	462	292	64]
[199	15	117	373	65	712	93	75	291	60]
[20	60	94	563	74	102	12	562	315	198]

where C[i,j] is equal to the number of observations known to be in class i but

- predicted to be in class j.

4.2 Mini-Batch Stochastic Gradient Descent – Logistic

- Regression
- Epochs = 25
- Batch size = 50
- **Results:**
- Testing Accuracy on MNIST = 90.33
- Testing Accuracy on USPS = 35.16

Confusion Matrix on MNIST:

[956	0	3	2	0	2	9	1	7	0]
[0	1103	2	4	1	2	4	0	19	0]
[11	6	889	18	15	0	17	21	45	10]
[5	0	17	905	1	28	4	15	24	11]
[1	5	5	1	904	0	11	2	8	45]
[15	5	6	44	14	729	16	10	44	9]
[16	3	5	2	12	15	899	1	5	0]
[3	19	28	4	11	0	0	922	4	37]
[9	9	9	31	8	24	13	13	844	14]
[10	8	6	11	44	14	0	27	7	882]

where C[i,j] is equal to the number of observations known to be in class i but

predicted to be in class j.

Confusion Matrix on USPS:

[595	4	357	59	250	122	101	44	159	309]
[228	303	130	354	278	54	40	307	289	17]
[209	25	1181	143	65	78	95	90	91	22]
[106	3	118	1283	19	233	29	59	98	52]
[62	81	41	63	1017	123	39	130	297	147]
[174	20	211	189	45	1042	126	71	87	35]
[364	12	357	112	103	224	698	23	72	35]
[197	212	312	464	72	78	35	299	284	47]
[226	30	144	213	128	571	118	44	446	80]
[44	184	161	483	149	88	15	366	342	168]

where C[i,j] is equal to the number of observations known to be in class i but 83 predicted to be in class j.

4.3 Neural Network: Training Samples = 50000Validation Samples = 10000Testing Samples MNIST = 10000Testing Samples USPS = 20000 $input_size = 784$ $drop_out = 0.2$ first_dense_layer_nodes = 512 second_dense_layer_nodes = 256 third_dense_layer_nodes =10 Activation function first layer = ReLu Activation function second layer = ReLu Activation function third layer = softmax Optimizer = rmsprop Loss = categorical_crossentropy model batch size = 128Number of Epochs = 254.3.1 Results and Confusion Matrix on MNIST Dataset **Results:** Training Accuracy = 99.87Validation Accuracy = 98.13Testing Accuracy = 98.24**Confusion Matrix:** [972 [0 1130 2 1007 [[[[[[[[where C[i,j] is equal to the number of observations known to be in class i but predicted to be in class j. 4.3.2 Results and Confusion Matrix on USPS Dataset Testing Accuracy = 42.91**Confusion Matrix:**

0]

0]

0]

16]

8]

[390	3	283	42	159	207	435	179	94	208]
Ī	49	470	534	110	301	89	37	214	115	81]
[82	4	1537	33	14	100	146	34	44	5]
[22	1	482	1039	6	332	38	19	41	20]
[9	70	102	13	1140	145	73	250	154	44]
[14	0	367	52	2	1314	183	18	40	10]
[68	10	369	5	17	102	1205	120	15	89]
[15	239	334	297	53	56	56	772	169	9]
[76	16	291	280	59	398	227	145	483	25]
[2	111	177	219	168	29	29	760	273	232]

¹²² 123

where C[i,j] is equal to the number of observations known to be in class i but predicted to be in class j. 124

Figure 1:Showing Validation loss, Validation Accuracy, Training Loss and Training Accuracy (top to bottom) against number of epochs

129 4.4 Support Vector Machine

- 130 Training Samples = 60000
- 131 Testing Samples MNIST = 10000
- 132 Testing Samples USPS = 20000
- 133

134 4.4.1 Support Vector Machine using Linear Kernel

- 135 **Results:**
- 136 Testing Accuracy on MNIST = 91.78
- 137 Testing Accuracy on USPS = 26.71
- 138

139 Confusion Matrix on MNIST:

ſ	961	0	2	1	1	4	6	3	1	11
ĺ	0	1112	3	2	0	1	5	1	11	0]
[11	11	911	18	10	4	13	12	39	3]
[4	0	19	918	2	22	5	12	20	8]
[1	4	5	4	913	0	9	3	5	38]
[9	2	0	39	12	767	18	7	30	8]
[7	4	7	2	5	21	909	1	2	0]
[2	8	23	5	7	1	1	948	5	28]
[11	13	8	20	14	31	8	13	843	13]
[7	8	2	15	31	12	0	26	12	896]

140 where C[i,j] is equal to the number of observations known to be in class i but

- 142 predicted to be in class j.
- 143

144 **Confusion Matrix on USPS:**

	omusic	JII IVIAL								
[381	1	348	233	51	161	111	572	60	82]
[46	280	658	158	362	96	28	284	67	21]
[75	56	1243	104	38	202	155	86	20	20]
[46	34	423	753	19	527	37	89	41	31]
[64	52	176	120	556	183	67	604	138	40]
[49	27	752	199	20	716	80	125	24	8]
[86	8	698	106	51	392	507	85	17	50]
[149	95	235	447	92	136	28	694	95	29]
[207	28	155	619	121	371	104	238	117	40]
[48	56	140	524	101	80	11	768	176	96]

145

146 where C[i,j] is equal to the number of observations known to be in class i but

- 147 predicted to be in class j.
- 148

149 4.4.2 Support Vector Machine using rbf Kernel with Gamma=1

150 and keeping other parameters as default

- 151 **Results:**
- 152 Testing Accuracy on MNIST = 17.59
- 153 Testing Accuracy on USPS = 26.13
- 154

155 **Confusion Matrix on MNIST:**

	[0	0	0	0	0	0	0	980	0	0]
	[0	731	0	0	0	0	0	404	0	0]
	[0	0	0	0	0	0	0	1032	0	0]
	[0	0	0	0	0	0	0	1010	0	0]
	[0	0	0	0	0	0	0	982	0	0]
	[0	0	0	0	0	0	0	892	0	0]
	[0	0	0	0	0	0	0	958	0	0]
	[0	0	0	0	0	0	0	1028	0	0]
	[0	0	0	0	0	0	0	974	0	0]
156	[0	0	0	0	0	0	0	1009	0	0]
150 157 158 159	wh pre	ere C dicte	[i,j] is ec d to be i	lual to t n class	he num j.	ber of o	observa	ations ki	nown to	be in cl	ass i but
160	Co	nfusi	on Mat	rix on l	USPS:						
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	1999	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
	[0	0	0	0	0	0	0	2000	0	0]
161	[0	0	0	0	0	0	0	2000	0	0]
162 163 164	wh pre	ere C dicte	[i,j] is ec d to be i	ual to t n class	he num j.	ber of o	observa	ations ki	nown to	be in cl	ass i but
105	4.4 D.	F.J C		sing r	DI KEI	rnei w	IIII G	a 111 111 a		(derai	11()
100	ке	suit	s:		NHOT	04.25					
16/	Tes	sting .	Accurac	y on M	NIST =	: 94.35					
108	Tes	sung .	Accurac	y on U.	5P5 =	38.34					
109	Co	nfuci	on Mat	riy on I	MNIST	•					
170	1	967	0	1	0	. 0	5	4	1	2	01
	ŗ	0	1120	2	3	0	1	3	1	5	01
	ĩ	9	1	962	7	10	1	13	11	16	2]
	Ī	1	1	14	950	1	17	1	10	11	4]
	[1	1	7	0	937	0	7	2	2	25]
	[7	4	5	33	7	808	11	2	10	5]
	[10	3	4	1	5	10	924	0	1	0]
	[2	13	22	5	7	1	0	954	4	20]
	[4	6	6	14	8	24	10	8	891	3]
171	[10	6	0	12	33	5	1	14	6	922]
172	wh	ere C	[i,j] is ec	ual to t	he num	ber of o	observa	ations ki	nown to	be in cl	ass i but
173	pre	dicte	d to be i	n class	j.						

1	7	4
---	---	---

175 Confusion Matrix on USPS:

	20musi	UII IVIA								
[573	2	428	19	285	248	73	44	6	322]
[110	429	285	137	273	180	46	501	22	17]
[128	18	1402	59	39	198	61	57	23	14]
[76	3	186	1123	11	483	5	70	27	16]
[18	67	91	14	1167	267	22	194	69	91]
[108	17	257	102	25	1367	60	43	15	6]
[197	7	489	24	98	394	748	13	7	23]
[50	225	457	265	57	416	15	452	41	22]
[73	25	209	193	87	1006	95	41	244	27]
[26	166	228	278	213	165	8	499	214	203]

176[261662282782131658499214203177where C[i,j] is equal to the number of observations known to be in class i but178predicted to be in class j.179

180 4.4.4 SVM using rbf kernel with Gamma=0.05 and C=5

- **Results:**
- 182 Testing Accuracy on MNIST = 98.28
- 183 Testing Accuracy on USPS = 26.13

Confusion Matrix on MNIST:

					•					
[974	0	1	0	0	1	1	1	2	0]
[0	1128	3	1	0	1	0	1	1	0]
[4	0	1015	1	1	0	0	6	5	0]
[0	0	1	996	0	4	0	5	4	0]
[0	1	3	0	965	0	4	0	2	7]
[2	0	1	7	1	872	3	1	4	1]
[5	2	0	0	2	3	945	0	1	0]
[0	3	9	1	1	0	0	1004	2	8]
[2	0	1	6	1	2	0	2	958	2]
[4	4	2	8	6	2	0	6	6	971]

where C[i,j] is equal to the number of observations known to be in class i butpredicted to be in class j.

Confusion Matrix on USPS:

	[2	26	0) 15	564	2	20	5	35	2	0	79	66]
	[78	257	7	/12	173	264	4	77	12	335	88	4]
	[8	0) 19	944	6		3	20	1	6	11	0]
	[4	0) 11	95	725	(C	41	0	0	35	0]
	[6	0	10)45	18	52	1	96	0	57	252	5]
	[15	0) 13	305	17		16	25	0	0	37	0]
	[78	0) 15	534	2	10	D	61	290	0	22	3]
	[17	6	5 14	133	129	(51	34	0	222	52	1]
	[7	0) 13	887	14	4	42	21	0	0	367	0]
105	[1	0) 15	510	79	20	6	29	0	39	266	50]
196 197 198	wher pred	re C icte	[i,j] is e d to be	equa e in c	l to th lass j	ne num	nber of	f obse	ervatio	ns kno	own to b	e in cla	ass i but
199	4.5		Ran	don	1 Fo	rest							
200	n es	stir	nator	s =	10								
201	Res	ult	s:										
202	Testi	ino	Accura	ncv c	n M	JIST =	= 94 60)					
202	Testi	ing	Accura	icy c	on US	PS =	39.67						
204	1050		100010		n es	15	27101						
205	Cont	fusi	on Ma	trix	on N	ÍNIST	:						
	[9	67	0)	0	2	(C	2	5	2	2	01
	ſ	0	1121		5	2	(0	1	2	0	4	01
	ſ	8	3	9	85	8		3	0	2	11	11	11
	ſ	1	0)	18	940		2	16	0	12	18	31
	ĺ	3	1		4	3	933	3	0	8	4	4	22]
	ĺ	8	4		4	36	8	8 8	12	5	3	8	4]
	ĺ	6	3	3	2	0	8	3	10	925	0	4	0]
	ĺ	4	8	3	21	10	(5	1	0	963	3	12]
	ĺ	7	2	2	14	20	13	3	12	7	5	888	6]
206	ĺ	6	9)	7	16	19	9	10	2	9	5	926]
200	wher	ъС	[i i] is e	ana	l to th	n num	her of	fohse	rvatio	ns kna	wn to h	ne in cla	- Ass i hut
208	pred	icte	d to be	in c	lass i				// valio				100 1 001
209	prod				iace j	•							
210	Con	fusi	ion Ma	trix	on U	SPS:							
	[66	4	54 3	04	113	352	125	80	134	14	160]		
	[7	8 4	194 1	68	110	218	95	37	747	20	33]		
	[25	9 1	L09 9	31	116	99	183	80	176	31	15]		
	[12	3	48 1	90	926	91	386	31	121	24	60]		
	[3	3 2	216 1	16	90	951	154	41	305	36	58]		
	[28	5	88 1	68	239	68	913	67	119	21	32]		
	[41	8	91 3	38	107	160	288	460	86	27	25]		
	[14	0 4	410 3	04	256	76	191	45	541	14	23]		
	[18	7 1	125 2	87	239	159	637	96	92	133	45]		
211	[8]	0 2	282 3	13	300	245	141	37	421	68	113]		

- 212 where C[i,j] is equal to the number of observations known to be in class i but
- 213 predicted to be in class j.
- 214

215 4.6 Ensemble Classifier

- 216 This is the combination of the above models namely, Logistic Regression, SVM
- 217 using Linear Kernel, Neural Network and Random Forest using Majority Voting.
- 218

219 **Results:**

- 220 Testing Accuracy on MNIST = 95.30
- 221 Testing Accuracy on USPS = 36.60
- 222

223 Confusion Matrix on MNIST:

г	071	1	1	0	0	2	2	1	2	01
L	911	1	1	0	0	2	2	1	2	0]
[0	1127	3	1	0	1	2	1	0	0]
[7	7	990	5	2	2	3	8	7	1]
[2	0	17	974	0	7	0	4	5	1]
[1	2	3	2	950	0	5	1	3	15]
[6	1	1	34	8	824	9	0	8	1]
[8	3	2	2	6	16	921	0	0	0]
[2	6	22	5	6	1	0	974	2	10]
[6	7	6	23	10	24	9	10	873	6]
[7	7	3	14	22	7	0	16	6	927]

- where C[i,j] is equal to the number of observations known to be in class i but
- 226 predicted to be in class j.
- 227

228 Confusion Matrix on USPS:

\mathbf{v}	oman									
[610	11	354	127	152	180	93	240	57	176]
[78	433	515	148	266	110	15	362	65	8]
[119	28	1463	73	16	151	75	39	25	10]
[52	6	413	1054	4	374	18	42	23	14]
[47	114	136	60	1008	135	31	290	137	42]
[101	25	450	176	4	1132	50	38	18	6]
[189	26	623	58	44	308	665	40	7	40]
[162	253	229	450	37	108	21	608	121	11]
[234	37	242	431	66	554	92	107	208	29]
[39	144	182	455	90	57	7	672	215	139]

229 230

where C[i,j] is equal to the number of observations known to be in class i but predicted to be in class j.

232

233 5 Questions to be Answered

5.1 We test the MNIST trained models on two different test sets: the test set from MNIST and a test set from the USPS data set. Do your results support the "No Free Lunch" theorem?

237 Answer: No Free Lunch Theorem states that no single Machine learning classification algorithm

- 238 can be universally better than any other one on all domains. In simple words, it means that no
- algorithm is universally best for every problem.

In our results, we are getting higher testing accuracy for MNIST test set but much lower accuracy for USPS data set which means that our model is not performing well on USPS dataset and so the results supports No Free Lunch theorem.

243

5.2 Observe the confusion matrix of each classifier and describe the relative strengths/weaknesses of each classifier. Which classifier has the overall best performance?

- Answer: Confusion Matrix on MNIST test set for the Logistic Regression, Neural Network,
 Random Forest, SVM using linear kernel, rbf kernel with gamma=auto, rbf kernel with
- 248 gamma=0.05 and C=5 clearly classifies the test set to the Actual class with high accuracy.
- 249
- 250 Further on MNIST dataset, in case of SVM using rbf kernel with gamma=1 and as the
- gamma parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The gamma parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. With the first two target values in MNIST training set being 7 and 1 the model classifies 92.69% samples
- into class7 (digit 7) and remaining into class1 (digit 1). In case of USPS dataset SVM using rbf
- kernel with gamma=1 classifies all the test samples to class7 (digit 7) which is quite expected as 7 being the first target value in MNIST training set.
- 258 Logistic Regression: Output has probabilistic interpretation plus it can be regularized to avoid 259 overfitting. It is very fast and gives a bit lower accuracy than other models. Its weakness is that 260 although it is fast it tends to underperform when compared to other alternatives.
- 261 **Neural Network:** Since here we have a large dataset neural network is a good choice. It gives very high accuracy and takes less time to train when compared to SVM.
- Random Forest: It is easy to tune and gives high accuracy a little less than SVM and Neural
 Network but it is much faster than SVM and Neural Network.
- 265 **Support Vector Machine:** These are trickier to tune due to choosing right kernel. It takes a lot of 266 time to train the model among all the methods. It gives very high accuracy if the model is tuned 267 well. As in this case model with gamma = 0.05 and C = 5 gives very high accuracy.
- 268
- Overall considering the test accuracy Neural Network and SVM performed equally well on test set
 but taking the training time into account Neural Network performed the best.
- 271

272 5.3 Combine the results of the individual classifiers using a classifier combination 273 method such as majority voting. Is the overall combined performance better than that of any 274 individual classifier?

- Answer: By combining the results of individual classifier using majority voting the overall
 combined performance is better than the individual performance of Logistic Regression, SVM
 using Linear Kernel and Random Forest.
- 278
- 279

280 6 Conclusion:

	Test Accuracy MNIST test set	Test Accuracay USPS dataset
Logisitic Regression	92.01	33.44
Neural Network	98.24	35.16
SVM using Linear Kernel	91.78	26.71

SVM using rbf kernel	17.59	26.13
(gamma=1)		
SVM using rbf kernel	94.35	38.54
(gamma = auto)		
SVM using rbf kernel	98.28	26.13
(gamma=0.05 and		
C=5)		
Random Forest	94.60	39.67
Ensemble Classifier	95.30	36.60

²⁸²

Table 1: Testing Accuracy values for different models with different configuration

283

284 **References**

[1] Towards Data Science. (2018). Machine Learning – Towards Data Science. [online] Available at: https://towardsdatascience.com/machine-learning/home

[2] Brownlee, J. (2018). Machine Learning Mastery. [online] Machine Learning Mastery. Available at: https://machinelearningmastery.com/